Worksheet for Exploration 11.4: Moment of Inertia and Angular Momentum

A 1-kg red mass is incident on an identical black mass that is attached to a massless rigid string so that it can rotate around the origin as shown **(position is shown in meters and time is shown in seconds)**. At t = 2.6 s the red mass undergoes a completely elastic collision with the black mass. <u>Restart</u>.

Watch the animation. You may vary the radius of the pendulum between 2 and 10 m. Answer the first three questions before clicking the "see other variables" check box.

- a. As you reduce the length of the pendulum, does the angular speed of the pendulum increase or decrease? (PREDICT)
 - i. Measure for several different r's and rank in order of increasing angular speed.

r	Angular Speed	
	5 (highest)	
	4	
	3	
	2	
	1 (lowest)	

- b. From what you know about conservation laws, state whether you think linear momentum, angular momentum and kinetic energy are conserved during the animation. Why?
 i. Linear Momentum
 - ii. Angular momentum
 - iii. Kinetic Energy

c. Set R = 1.5 m. Calculate the linear momentum, angular momentum (about the origin), and kinetic energy of the system at t = 1, 2, 4, and 5 s.

i.	Linear Momentum					

ii.	Angular Momentum				

iii.	Kinetic Energ	у	

You may now click the check box.

d. If your answers differ from what you thought, explain why they differ.