Worksheet for Exploration 5.4: Circular Motion and a Spring Force

A 1-kg mass is attached to the end of a spring of spring constant k = 10 N/m and natural length $I_0 = 5$ m (position is shown in meters and time is shown in seconds). You are to set the spring in motion by setting its initial position (x_0 , 0) and its initial velocity (0, v_{0y}). Restart.

- a. Find the v_{0y} needed for circular motion at a radius of 10 m (the red circle).
 - i. Set x_o to 10 m and play with the simulation to find an initial velocity that gives circular motion.

v _o (measured)=		
------------------	----------	----	--	--

- ii. Now see if you can predict the initial velocity using the given information.
 - a. You may want to sketch a force diagram to indicate the direction of the force on the ball, and also the direction of the acceleration (what type of acceleration is this).
 - b. Use Newton's 2^{nd} law for this situation. This should give you an equation that you can use to solve for v_{oy} .
- iii. How does your prediction compare with your measured value? They should agree.

- b. Determine the period of such a motion.
 - i. Use your predicted value of the initial speed. You should be able to write out a relation between the distance traveled, the speed, and the radius for the case of UNIFORM CIRCULAR MOTION.