Worksheet for Exploration 24.1: Flux and Gauss's Law

In this Exploration, we will calculate the flux, Φ , through three Gaussian surfaces: green, red and blue (**position is given in meters and electric field strength is given in N/C**). Note that this animation shows only two dimensions of a three-dimensional world. You will need to imagine that the circles you see are spheres.

Flux is a measure of the electric field through a surface. It is given by the following equation:

 $\Phi = \int_{\text{surface}} \mathbf{E} \cdot d\mathbf{A} = \int_{\text{surface}} \mathbf{E} \cos\theta \, d\mathbf{A},$

where **E** is the electric field, d**A** is the unit area normal to the surface and θ is the angle between the electric field vector and the surface normal.

Move the test charge along one of the Gaussian surfaces (you must imagine that it is a sphere even though you can only see a cross section of it).

- a. What is the magnitude of the electric field along the surface?
 - i. When you measure the electric field be careful and precise. Spend sufficient time to take good measurements.

E _{green} =	-
E _{red} =	
E _{blue} =	

- b. In what direction does it point?
- c. What direction is normal to the Gaussian surface?
 - i. that is ...relative to the electric field direction in each case.

If the electric field, **E**, and the normal to the Gaussian surface, **A**, always point in the same direction relative to each other, and the electric field is constant, then the equation for flux becomes: $\Phi = \text{Ecos}\theta \int dA = \text{EAcos}\theta$

d. In the case of the point charge in (a) – (c), what is the angle between the electric field and the normal to the surface?

This means that $\cos\theta = 1$. Therefore, for this case, $\Phi = EA$.

e. Calculate the flux for the surface you've chosen (remember that the surface area of a sphere is $4\pi R^2$).

- i. Place all flux answers below in part f.
- f. Calculate the flux for the other two surfaces.

Φ_{green} =	
Φ_{red} =	
Φ_{blue} =	

Because the electric field decreases as $1/r^2$, but the area increases as r^2 , the flux is the same for all three cases. This is the basis of Gauss's law: the flux through a Gaussian surface is proportional to the charge within the surface. With twice as much charge, there is twice as much flux. Gauss's law says that $\Phi = q_{\text{enclosed}}/\epsilon_0$.

g. What is the magnitude and sign of the point charge?

q=_____